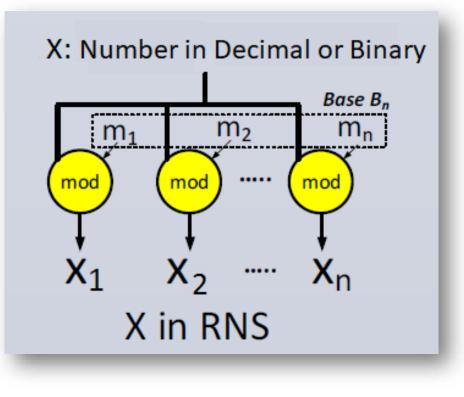
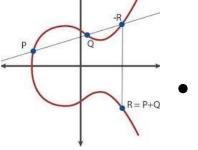
Practical Evaluation of Protected RNS Scalar Multiplication

CHES 2019

By Louiza Papachristodoulou Joint work with A. Fournaris, K. Papagiannopoulos, L. Batina



Outline


- Residue Number System in Elliptic Curve Cryptography
- Proposed TVLA threshold calculation
- TVLA analysis
- Location and Data Dependent Template Attacks
- Conclusions

Residue Number System

X = 50(m1, m2, m3) = (3, 7, 11) (x1, x2, x3) = (2, 1, 6)

RNS in Elliptic Curve Cryptography

- Elliptic curves defined over prime fields GF(p)
- Modular operations turn easily to RNS modular operations over GF(p)
- RNS mod multiplication usually realized through RNS Montgomery multiplication to avoid modular inversion, but includes base extension
- EC scalar multiplication is the critical operation Q = kP

LRA Montgomery Power Ladder

Choose base B_n , B'_n . Transform V, R to RNS format using permutation p_t

- $R_0 = R$, $R_1 = R + V$, $R_2 = -R$
- Convert R_0 , R_1 , R_2 to Montgomery format
- For i= t-1 to 0
 - $R_2 = 2R_2$ in permutation p_t
 - If $k_i = 1$

 $R_0 = R_0 + R_1$ and $R_1 = 2R_1$ in permutation p_t

else

 $R_1 = R_0 + R_1$ and $R_0 = 2R_0$ in permutation γ_t

• Integrity check: if i,k not modified and $R_0 + V = R_1$ then ret. $R_0 + R_2$ in permutation γ_t else ret. random value Transform $R_0 + R_2$ to binary format

Test Vector Leakage Assessment (TVLA)

- Statistical tests between two trace-sets of acquisition
- Welch's t-test to evaluate if two sets have significant statistical differences

$$s_i = \frac{L_{i,A} - L_{i,B}}{\sqrt{\frac{\sigma_{i,A}^2}{n_A} + \frac{\sigma_{i,B}^2}{n_B}}}$$

• Values above ±4.5, indicates leakage, but TVLA does not exploit it

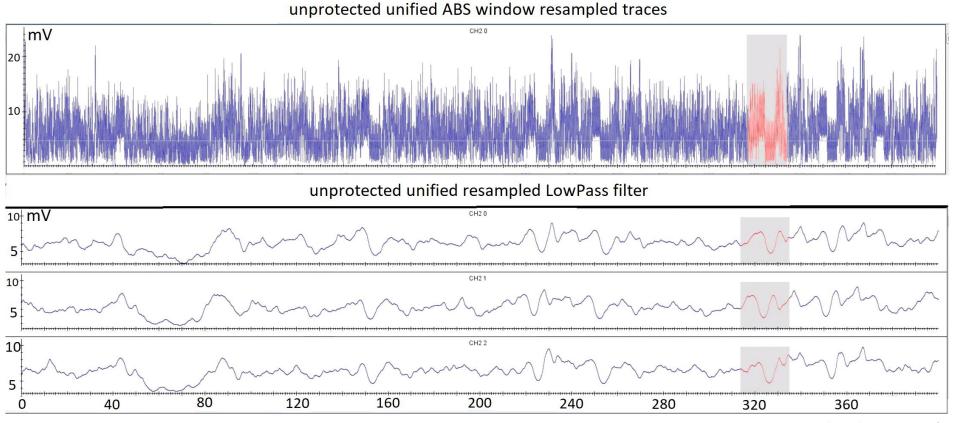
t-test Threshold Calibration for TVLA

Input nt_A , nt_B : number of traces for groups A,B n_s : number of samples σ_A, σ_B : sampled standard deviation **Output** Threshold value for Welch's t-distribution th_t

$$nt_A = nt_B = 4 * 10^3 - 10 * 10^3$$

 $n_s = 4 * 10^5 - 8 * 10^5$
 $\sigma_A = 9.7$, $\sigma_B = 6.1$

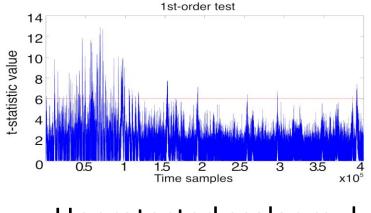
= +6.3


- 1. Choose level of significance α . Here α =0.00001
- 2. Family-wise error rate fwer = $(1 a)^{n_s}$

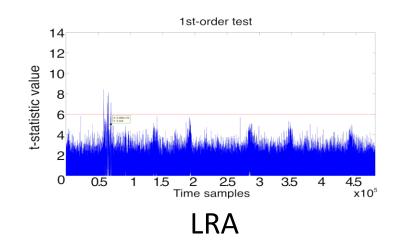
3. Šidak correction
$$sidak_{a} = 1 - (1 - a)^{(1/n_s)}$$

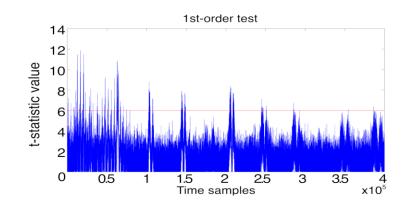
4. df = $\left(\frac{\sigma_A^2}{nt_A} + \frac{\sigma_B^2}{nt_B}\right)^2 / \left(\frac{\left(\frac{\sigma_A^2}{nt_A}\right)^2}{nt_A - 1} + \frac{\left(\frac{\sigma_B^2}{nt_B}\right)^2}{nt_B - 1}\right)$
5. Threshold th_t = $|tinv(1 - sidak_a/2, df)|$ th_t

RNS implementation on BeagleBone

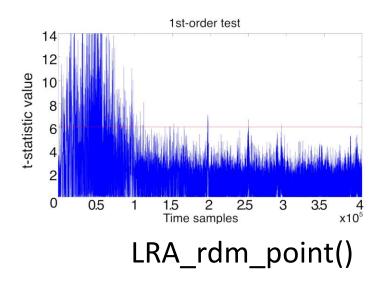

- C Software implementation on ARM Cortex A8
- RNS Montgomery multiplication
- Dedicated and Unified Group Law
- 5 different variations: unprotected, randomized scalar, random input point, random base permutations (LRA), random order of operations

Processing of Traces – Low Pass Filter

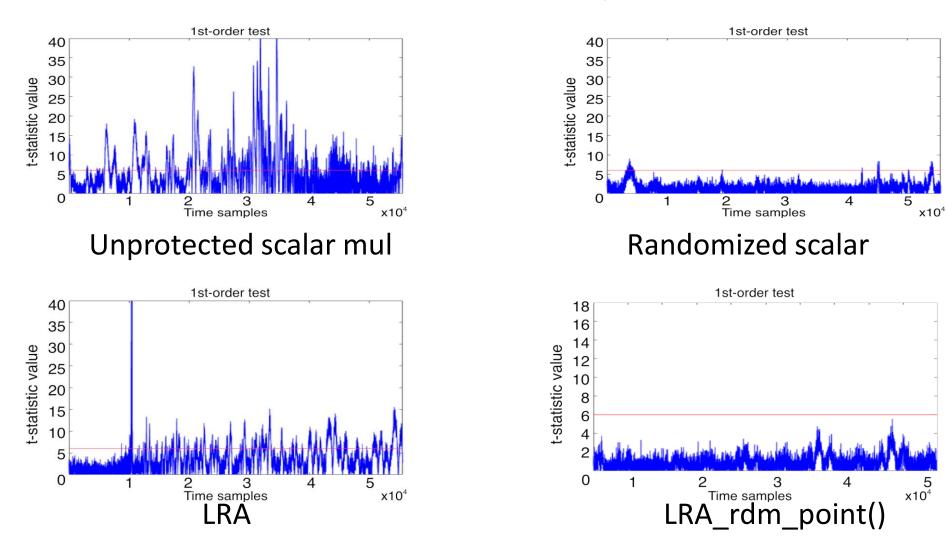



time in µseconds

t-test random vs fixed scalar on twisted Edwards curve (a=1, d=2, p= $2^{192} - 2^{64} - 1$)



Unprotected scalar mul



Randomized scalar

t-test random vs fixed point on secure Edwards curve (a=107, d=47, h=4, p= $2^{192} - 2^{64} - 1$)

Data Dependent Template Attacks

- The value of a secret variable can be monitored
- Trigger around the key-dependent assignment (if-statement) If k_i = 1: R₀ = R₀ + R₁ and R₁ = 2R₁ Else: R₁ = R₀ + R₁ and R₀ = 2R₀
- After alignment, 20k traces. Used half for templates, half for classification
- Success rate 90-91% for the unprotected case, 82-97% for LRA countermeasure activated
- Scalar randomization (65-72%) and LRA randomized RNS operations (55-58%) are good countermeasures

Location Dependent Template Attacks

- Templates created for storage structure that handles the keydependent instruction (doubling) If $k_i = 1$: $R_0 = R_0 + R_1$ and $R_1 = 2R_1$ Else: $R_1 = R_0 + R_1$ and $R_0 = 2R_0$
- Template classification: 95-99.9%
- LRA with randomized operations: 70-83%

Location Dependent Leakage

- Registers are not really single registers, RNS values are stored in 50-bit chunks result of doubling is stored in different memory locations
- Location dependent leakage was not an expected result
- The normal distributions for $k_i = 0$ and $k_i = 1$ for every variation of the implementation are very different (N(-24.3, 9, 7), N(19.6, 6.1))
- Leaky platform capacitors next to each other
- Scalar randomization not an efficient countermeasure
- LRA with randomized operations makes template attacks harder

Evaluation Table

Algorithm	Welch t-test	Welch t-test	TA	TA	PO
	r-vs-f scalar	r-vs-f point	Data	Location	
unprotected	×	×	×	×	0%
rdm_point	×	×	×	×	52%
LRA	×	×	×	×	50%
protected_LRA	×	1	×	×	110%
unprotect_rdm_scal	1	N/A	1	×	19%
rdm_point_rdm_scal	1	N/A	1	×	54%
LRA_rdm_scalar	1	N/A	1	×	51%
protected_rdm_scal	✓	N/A	1	1	110%
unprotect_unified	×	×	X	×	19%
rdm_point_unified	×	×	×	×	99%
LRA_unified	×	×	X	×	72%
protected_unified	1	1	×	×	144%
LRA_nc_rdm_operat	×	1	1	1	76%
LRA_nc_rdm_operat					
_rdm_scalar	✓	N/A	1	1	76%

Pass t-test/secure against templates

Fail t-test/not secure against templates

Conclusions

- TVLA bounds not rigid; compute according to distribution of traces, number of samples, number of traces
- Randomization of scalar, input point, regularity of MPL are good countermeasures but not enough to avoid leakage
- Different RNS representations do not lower the template success rates
- Randomization of RNS operations protects against templates and less expensive compared to randomization of input point
- Classification using ML algorithms
- Evaluation on an FPGA would give further insights in the security of RNS

THANK YOU FOR YOUR ATTENTION !

louiza@cryptologio.org